15	60	21-			6		D	ALIBRATION
_					2		Janua	ary 24, 201
nvir	onm	ent	al	-				
•	Ce	rtifa	cate of		Cal	ibri	ntion	
			Calibration (Certificatio	n Informat	ion		
Cal. Date:	January 24	2018	Rootsr	neter S/N:	438320	Tav	293	°K
Operator:	Jim Tisch	V1251			450520			1.2.92
		10.20 II 40.30 M				Pa:	756.9	mm Hg
Calibration	Model #:	TE-5025A	Calib	rator S/N:	3166			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	40		1
	Run	(m3)	(m3)			ΔP	ΔH ('- 1120)	
	1	1	(113)	(m3) 1	(min) 1.4430	(mm Hg)	(in H2O)	-
	2	3	4	1	1.0270	3.2	2.00	-
	3	5	6	1	0.9220	7.9	5.00	· · ·
	4	7	8	1	0.8780	8.7	5.50	
	5	9	10	1	0.7270	12.6	8.00	
						12.0	0.00]
			D	ata Tabulat	ion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆н(та/Ра)	
	(m3)	(x-axis)	(y-axi	s)	Va	(x-axis)	(y-axis)	
	1.0087	0.6990	1.423	3	0.9958	0.6901	0.8799	
	1.0044	0.9780	2.012		0.9915	0.9655	1.2443	
	1.0024	1.0872	2.250		0.9896	1.0733	1.3912	
	1.0013	1.1404	2.360		0.9885	1.1259	1.4591	-
	0.9961	1.3701	2.846		0.9834	1.3526	1.7598	
	OCTO		2.122			m=	1.32895	
	QSTD	b=	-0.060		QA [b=	-0.03719	
		r=	0.9999	99		r=	0.99999	
				Calculation	s			1
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔF	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	e calculation	IS:		
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ (Pa (Tstd Pstd (Ta))-b)	Qa=	1/m ((√∆H	(Ta/Pa))-b)	
	Standard	Conditions						La la companya di seconda di s
Tstd:	298.15			Г		RECAL	IBRATION	
Pstd:		nm Hg		H				
		ey					nual recalibratio	
		er reading (in					egulations Part 5	
ΔP: rootsme	ter manome	ter reading (mm Hg)				Reference Meth	
	Southe temp	erature ("K)			Dotorminati	on of Surn	ended Particulate	Adattar in
Ta: actual ab Pa: actual ba			49)				re, 9.2.17, page 3	Contraction of the second s

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS010	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		293		Kelvin	Pressure,	Pa		1020	mmHg
Orifice Transfer Standard Information									
Equipment No.	Ori3166			Slope, m _c	2.122	31	Intercept,	bc	-0.06016
Last Calibration Date		24-Jan-1	8		(H x F	P _a / 101	3.3 x 298	/ T _a) 1/2
Next Calibration Date		24-Jan-1	9		=	m _c :	k Q _{std} + b	с	
Calibration of TSP									
Calibration	Manometer Reading			Q,	std	Contin	uous Flow		IC
Point	H (inches of water)		(m ³ /	min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	difference	X-a	xis	(0	CFM)		Y-axis
1	1.5	1.5	3.0	0.85	541		25		25.2956
2	2.8	2.8	5.6	1.15	566		34		34.4020
3	3.6	3.6	7.2	1.30)76		38		38.4493
4	4.8	4.8	9.6	1.50)55		46		46.5439
5	6.0	6.0	12.0	1.67	799		54		54.6385
By Linear Regression of Y	′ on X			<u>.</u>					
s	Slope, m	=	35	.1088	Inte	rcept, b =	-	5.8015	5
Correlation Coe	efficient*	=	0.	9935	-				
Calibration A	ccepted	=	Yes	s/ No **	-				
					-				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA6a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS013	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		293	5	Kelvin	Pressure,	Pa	Pa 1020		
Orifice Transfer Standard Information									
Equipment No.	Ori3166			Slope, m _c	2.122	31	Intercept,	bc	-0.06016
Last Calibration Date		24-Jan-1	8		(HxI	P _a / 101	3.3 x 298	/ T _a) 1/2
Next Calibration Date		24-Jan-1	9		=	m _c :	k Q _{std} + b	С	
Calibration of TSP									
Calibration	Manometer Reading			Q	std	Contin	uous Flow		IC
Point	H (inches of water)		(m ³ /	min.)	Reco	order, W	(W(P _a /	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	difference	X-a	xis	(0	CFM)		Y-axis
1	1.4	1.4	2.8	0.82	261		28		28.3311
2	2.3	2.3	4.6	1.05	509		33		33.3902
3	3.7	3.7	7.4	1.32	253		41		41.4848
4	4.8	4.8	9.6	1.50)55		46		46.5439
5	6.0	6.0	12.0	1.67	799		54		54.6385
By Linear Regression of Y	′ on X								
S	Slope, m	=	30	.1687	Inte	rcept, b =	:	2.3363	i
Correlation Coe	efficient*	=	0.	9927	-				
Calibration A	Calibration Accepted = Y				-				
					-				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

除合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

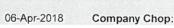
Certificate No.:	18CA0322 01			Page	1	of	2
Item tested							
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter Larson Davis LxT1 0003737 -	(Type 1)	, , ,	Microphone PCB 377B02 171529 -			
Item submitted by							
Customer Name: Address of Customer: Request No.: Date of receipt:	Lam Geotechnics L - - 22-Mar-2018	td.					
Date of test:	28-Mar-2018						
Reference equipment	used in the calibra	ation					
Description: Multi function sound calibrator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 61227		Expiry Date: 08-Sep-2018 01-Apr-2018		Traceabl CIGISMEC CEPREI	
Ambient conditions							
Temperature: Relative humidity:	21 ± 1 °C 50 ± 10 %						

Relative humidity: $50 \pm 10 \%$ Air pressure: $1005 \pm 5 hPa$

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results


This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0322 01

Page 2 of

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	А	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	N/A	N/A	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

2	Α	- End -	j	
Calibrated by:	1~6	Checked by:	~	
	Fung Chi Yip		Lam Tze Wai	
Date:	28-Mar-2018	Date:	06-Apr-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

Model Number	CAL20	0	Procedure Number D0001.8386						
Serial Number	13098		Technician	Scott Montgomery					
Test Results	Pass		Calibration Date	29 Oct 2018					
1.50 - 1.00	Inopera	and a	Calibration Due						
Initial Condition	mopera	sole	Temperature	23	*C	± 0.3 °C			
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH			
			Static Pressure	101.2	kPa	±1 kPa			
Evaluation Metho	od	The data is aquired by the insert volta circuit sensitivity. Data reported in dB	500 XM 200 CM 570	ne refere	nce mic	crophone's open			
Compliance Standards		Compliant to Manufacturer Specificat IEC 60942:2017	IEC 60942:2017 ANSI \$1.40-2006						

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used		
Cal Date	Cal Due	Cal Standard
09/06/2018	09/06/2019	001021
04/10/2018	04/10/2019	001051
03/07/2018	03/07/2019	005446
09/20/2018	09/20/2019	006506
08/07/2018	08/07/2019	006507
05/10/2018	05/10/2019	006510
07/18/2018	07/18/2019	007368
	Cal Date 09/06/2018 04/10/2018 03/07/2018 09/20/2018 08/07/2018 05/10/2018	Cal Date Cal Due 09/06/2018 09/06/2019 04/10/2018 04/10/2019 03/07/2018 03/07/2019 09/20/2018 09/20/2019 08/07/2018 08/07/2019 08/07/2018 08/07/2019 05/10/2018 05/10/2019

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/29/2018 1-43-01PM